Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-5-ethoxycarbonyl-4-methylthiazol-3-ium chloride monohydrate

Jin Rui Lin and Hong Zhao*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: zhaohong@seu.edu.cn

Received 17 June 2009; accepted 26 June 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.122; data-to-parameter ratio = 19.3.

In the crystal structure of the title compound, $C_7H_{11}N_2O_2S^+$.- $Cl^-\cdot H_2O$, the cations, anions and water molecules are linked by intermolecular N-H···O, N-H···Cl, O-H···O and O-H···Cl hydrogen bonds, forming layers stacked along [201].

Related literature

For the biological activity of thiazole derivatives, see: Turan-Zitouni *et al.* (2003). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data $C_7H_{11}N_2O_2S^+ \cdot Cl^- \cdot H_2O$ $M_r = 240.70$

Monoclinic, $P2_1/c$

a	= 10.637	(2) Å
b	= 7.4463	(15) Å
C	= 15.082	(3) Å

```
\beta = 110.22 (3)^{\circ}

V = 1121.0 (4) Å^{3}

Z = 4

Mo K\alpha radiation
```

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\rm min} = 0.821, T_{\rm max} = 0.868$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.122$ S = 1.122564 reflections 133 parameters 11232 measured reflections 2564 independent reflections 2097 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O1W^{i}$	0.86	1.94	2.789 (3)	169
$N1 - H1B \cdot \cdot \cdot Cl1^n$	0.86	2.30	3.135 (2)	164
$O1W - H1C \cdot \cdot \cdot Cl1$	0.93	2.25	3.118 (2)	156
$O1W - H1D \cdots O1^{iii}$	0.83	2.05	2.863 (3)	167
$N2 - H2 \cdot \cdot \cdot Cl1^{i}$	0.79 (3)	2.35 (3)	3.141 (2)	173 (2)
Symmetry codes: (i) $-x, -y+1, -z.$	$-x+1, y-\frac{1}{2},$	$-z + \frac{1}{2};$ (ii)	$-x+1, y+\frac{1}{2}, -$	$-z + \frac{1}{2};$ (iii)

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL/PC*.

Financial support from the Southeast University Fund for Young Researchers (4007041027) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2337).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Turan-Zitouni, G., Demirayak, E., Ozdemir, A., Kaplancikli, Z. A. & Yildiz, M. T. (2003). Eur. J. Med. Chem. 39, 267–272.

 $\mu = 0.51 \text{ mm}^{-1}$

 $0.40 \times 0.32 \times 0.28 \text{ mm}$

. Т – 292 К

 $R_{\rm int} = 0.037$

supplementary materials

Acta Cryst. (2009). E65, o1753 [doi:10.1107/S1600536809024532]

2-Amino-5-ethoxycarbonyl-4-methylthiazol-3-ium chloride monohydrate

J. R. Lin and H. Zhao

Comment

Heterocyclic compounds containing the thiazole ring have recently received much attention for their broad-spectrum biological activities (Turan-Zitouni *et al.*, 2003). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1), contains 5-(ethoxycarbonyl)-4-methylthiazol-2-aminium cations, chloride anions and water molecules in the stoichiometric ratio of 1:1:1. The cation is approximately planar, the maximum displacement being 0.062 (2) Å for atom O1. Bond lengths (Allen *et al.*, 1987) and angles have normal values. In the crystal structure (Fig. 2), cations, anions and water molecules are linked by intermolecular N—H…O, N—H…Cl, O—H…O and O—H…Cl hydrogen bonds (Table 1) to form layers stacked along [2 0 $\overline{1}$].

Experimental

A mixture of thiourea (0.2 mol), ethyl acetoacetate (0.1 mol) and I_2 (0.1 mol) was stirred for 15 hours at 120°C. After refluxing the mixture with chlorhydric acid, the title compound was obtained. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of a 95% ethanol/water solution at room temperature.

Refinement

The H2 hydrogen atom was located in a difference Fourier map and refined freely. The water H atoms were also located in a difference Fourier map but not refined $[U_{iso}(H) = 1.5U_{eq}(O)]$. All other H atoms were placed geometrically and refined as riding, with C—H = 0.96-0.97 Å, N—H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C, N)$ or $1.5U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Packing diagram of the title compound, showing the structure along the b axis. Intermolecular H bonds are shown as dashed lined.

2-Amino-5-ethoxycarbonyl-4-methylthiazol-3-ium chloride monohydrate

Crvstal	data
Ci ybiai	cicici

$C_7H_{11}N_2O_2S^+\cdot C\Gamma^-\cdot H_2O$	$F_{000} = 504$
$M_r = 240.70$	$D_{\rm x} = 1.426 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2280 reflections
a = 10.637 (2) Å	$\theta = 2.3 - 27.4^{\circ}$
<i>b</i> = 7.4463 (15) Å	$\mu = 0.51 \text{ mm}^{-1}$
c = 15.082 (3) Å	T = 292 K
$\beta = 110.22 \ (3)^{\circ}$	Block, colourless
$V = 1121.0 (4) \text{ Å}^3$	$0.40\times0.32\times0.28~mm$
Z = 4	

Data collection

Rigaku SCXmini diffractometer	2564 independent reflections
Radiation source: fine-focus sealed tube	2097 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 292 K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -9 \rightarrow 9$
$T_{\min} = 0.821, \ T_{\max} = 0.868$	$l = -19 \rightarrow 19$
11232 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.122$	$w = 1/[\sigma^2(F_0^2) + (0.0547P)^2 + 0.5076P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{\text{max}} = 0.012$
2564 reflections	$\Delta\rho_{max} = 0.48 \text{ e } \text{\AA}^{-3}$
133 parameters	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.5427 (2)	0.4538 (3)	0.14877 (16)	0.0386 (5)
C2	0.3764 (2)	0.2578 (3)	0.06588 (16)	0.0388 (5)
C3	0.3260 (3)	0.0717 (3)	0.0413 (2)	0.0542 (7)
H3A	0.2446	0.0563	0.0545	0.081*
H3B	0.3920	-0.0121	0.0781	0.081*
H3C	0.3088	0.0508	-0.0247	0.081*
C4	0.3170 (2)	0.4157 (3)	0.03211 (17)	0.0411 (5)
C5	0.1833 (2)	0.4419 (3)	-0.03804 (17)	0.0455 (6)
C6	0.0280 (3)	0.6581 (4)	-0.1270 (2)	0.0616 (8)
H6A	-0.0419	0.6052	-0.1079	0.074*
H6B	0.0199	0.6116	-0.1888	0.074*
C7	0.0156 (3)	0.8556 (5)	-0.1302 (3)	0.0850 (11)
H7A	0.0248	0.9001	-0.0686	0.128*
H7B	-0.0706	0.8889	-0.1742	0.128*
H7C	0.0846	0.9063	-0.1501	0.128*
Cl1	0.33656 (7)	0.42792 (8)	0.29075 (5)	0.0540 (2)
N1	0.65955 (19)	0.5069 (3)	0.20741 (15)	0.0499 (5)
H1A	0.7182	0.4290	0.2380	0.060*
H1B	0.6775	0.6197	0.2153	0.060*
N2	0.5037 (2)	0.2825 (2)	0.13088 (14)	0.0391 (4)
01	0.10510 (19)	0.3235 (3)	-0.07219 (16)	0.0720 (6)
02	0.15910 (17)	0.6150 (2)	-0.05873 (13)	0.0544 (5)
O1W	0.1705 (2)	0.7502 (3)	0.17716 (18)	0.0799 (7)
H1C	0.2076	0.6373	0.1937	0.120*
H1D	0.0879	0.7443	0.1503	0.120*
S1	0.41995 (6)	0.59887 (7)	0.08238 (4)	0.04234 (19)

supplementary materials

H2	0.547 (2)	0.198 (3)	0.154	47 (16) 0	.033 (6)*	
Atomic displa	cement parameter	$rs(A^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
C1	0.0338 (11)	0.0311 (10)	0.0441 (12)	0.0043 (8)	0.0047 (9)	0.0015 (9)
C2	0.0357 (11)	0.0341 (11)	0.0414 (11)	-0.0007 (9)	0.0067 (9)	0.0003 (9)
C3	0.0496 (15)	0.0364 (12)	0.0625 (16)	-0.0065 (11)	0.0014 (12)	0.0003 (11)
C4	0.0343 (11)	0.0361 (11)	0.0463 (12)	0.0002 (9)	0.0056 (9)	0.0017 (10)
C5	0.0342 (12)	0.0447 (13)	0.0498 (13)	0.0033 (10)	0.0048 (10)	0.0023 (11)
C6	0.0406 (14)	0.0564 (16)	0.0654 (17)	0.0121 (12)	-0.0103 (12)	-0.0003 (13)
C7	0.0572 (19)	0.0549 (18)	0.110 (3)	0.0138 (15)	-0.0128 (18)	0.0051 (18)
Cl1	0.0531 (4)	0.0343 (3)	0.0627 (4)	-0.0034 (2)	0.0047 (3)	-0.0010 (3)
N1	0.0366 (10)	0.0341 (10)	0.0610 (13)	0.0021 (8)	-0.0061 (9)	0.0015 (9)
N2	0.0359 (10)	0.0284 (9)	0.0443 (10)	0.0058 (8)	0.0028 (8)	0.0030 (8)
01	0.0430 (11)	0.0534 (12)	0.0924 (15)	-0.0044 (9)	-0.0112 (10)	0.0004 (11)
02	0.0409 (9)	0.0456 (10)	0.0582 (10)	0.0083 (7)	-0.0064 (8)	0.0013 (8)
O1W	0.0451 (11)	0.0465 (11)	0.1127 (17)	-0.0019 (9)	-0.0180 (11)	-0.0051 (11)
S1	0.0357 (3)	0.0299 (3)	0.0515 (3)	0.0048 (2)	0.0024 (2)	0.0036 (2)
Geometric par	rameters (Å, °)					
C1N1		1 313 (3)	C6	.02	1.44	54 (3)
C1 - N2		1 339 (3)	C6	-C7	1.12	76 (4)
C1 = S1		1.339 (3)	C6-	-H6A	0.97	700
$C^2 - C^4$		1.721(2) 1 348(3)	C6-	-H6B	0.97	700
C2 - N2		1 382 (3)	C7—	-H7A	0.96	500
C2-C3		1.486 (3)	C7—	H7B	0.96	500
С3—НЗА		0.9600	C7—	H7C	0.96	500
С3—Н3В		0.9600	N1—	-H1A	0.86	500
C3—H3C		0.9600	N1—	-H1B	0.86	500
C4—C5		1.463 (3)	N2—	-H2	0.79	9(3)
C4—S1		1.750 (2)	O1W	–H1C	0.92	259
C5—O1		1.199 (3)	O1W	–H1D	0.83	324
С5—О2		1.330 (3)				
N1-C1-N2		125.3 (2)	С7—	-С6—Н6А	110	.3
N1-C1-S1		123.57 (17)	02—	-C6—H6B	110	.3
N2-C1-S1		111.12 (16)	C7—	-C6—H6B	110	.3
C4—C2—N2		111.61 (19)	H6A-	—С6—Н6В	108	.5
C4—C2—C3		129.6 (2)	С6—	-C7—H7A	109	.5
N2—C2—C3		118.8 (2)	С6—	-С7—Н7В	109	.5
С2—С3—НЗА	L	109.5	H7A-	—С7—Н7В	109	.5
С2—С3—НЗВ	5	109.5	С6—	-С7—Н7С	109	.5
НЗА—СЗ—НЗ	3B	109.5	H7A-	—С7—Н7С	109	.5
С2—С3—Н3С	1	109.5	H7B-	—С7—Н7С	109	.5
НЗА—С3—НЗ	3C	109.5	C1—	N1—H1A	120	.0
НЗВ—С3—НЗ	SC	109.5	C1—	N1—H1B	120	.0
C2—C4—C5		126.9 (2)	H1A-	—N1—H1B	120	.0

supplementary materials

C2—C4—S1	112.00 (17)	C1—N2—C2		115.39 (18)
C5—C4—S1	121.05 (17)	C1—N2—H2		125.1 (18)
O1—C5—O2	124.2 (2)	C2—N2—H2		119.5 (18)
O1—C5—C4	124.7 (2)	C5—O2—C6		116.1 (2)
O2—C5—C4	111.1 (2)	H1C—O1W—H1D		111.3
O2—C6—C7	107.3 (2)	C1—S1—C4		89.88 (11)
O2—C6—H6A	110.3			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —H	H···A	$D \cdots A$	D—H···A
N1—H1A···O1W ⁱ	0.86	1.94	2.789 (3)	169
N1—H1B…Cl1 ⁱⁱ	0.86	2.30	3.135 (2)	164
O1W—H1C…Cl1	0.93	2.25	3.118 (2)	156
O1W—H1D····O1 ⁱⁱⁱ	0.83	2.05	2.863 (3)	167
N2—H2···Cl1 ⁱ	0.79 (3) 2.35 (3)	3.141 (2)	173 (2)
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+1/2$	/2; (ii) -x+1, y+1/2, -	-z+1/2; (iii) $-x$, $-y+1$, $-z$.		

